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Abstract. We consider a generic model for a disordered Fermi liquid. By meansof an infinite 
resummation of the loop expansion we show that there is a phase transition involving the 
spin degrees of freedom which can be identified with a new fixed point in the renormalisation 
group flow equations. The critical exponents obtained for 2 < d < 4 are apparently exact. 
Thelarge-disorder phaseisdescribed asan incompletelyfrozenspinphase withnolong-range - -  
order and subdiffusive spin transport. The results are in good agreement with experiments on 
Si : P. 

Interesting developments have recently occurred in the problem of disordered inter- 
acting electrons. The field theoretic formulation of the problem [l] allows for the 
application of renormalisation group (RG) techniques. The interpretation of the resulting 
scaling equations in the absence of spin-flip mechanisms has long posed a problem 
because of their failure to display an obvious fixed point (FP). It was noticed in [2]  that 
they might possess an unconventional FP where the resistance, g ,  scales to zero, and a 
triplet interaction amplitude, y t ,  scales to infinity in such a way that their product, y = 
g y , ,  is finite at a F P ~ *  = 4~ + O ( E ~ )  in d = 2 + E dimensions. In [2]  it was suggested that 
this FP describes a metal-insulator transition (MIT). The present authors used power 
counting to prove (within logarithmic accuracy) the existence of this FP to all orders in a 
loop expansion, and to show that the exponent of the electrical conductivity o vanishes 
[ 3 , 4 ] .  However, a RG analysis at two-loop order revealed [ 4 ]  that the y*  = 4~ FP is 
suppressed by logarithmic terms. Trouble with this FP could already be anticipated at 
one-loop order, where the renormalised two-point vertex functions show a violation of 
extended dynamical scaling. The suppression of this ‘weak-scaling FP’ ruined the pros- 
pect of finding an answer to the questions about the existence and the nature of the 
expected instabilities in the transport properties of this model. The established tech- 
niques seemed to be exhausted without having led to a solution of the problem. 

In this letter we use a different technique, namely a direct infinite resummation of 
the loop expansion, to derive non-linear integral equations that describe spin transport 
in the limit g+ 0, y = constant. These equations display a phase transition from a spin 
diffusive phase to one where the spin diffusion coefficient at small frequencies &2 behaves 
like D,(S2) - S 2 ( d - 2 ) / 2  for 2 < d < 4. There is thus no spin localisation, but spin transport 
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is subdiffusive, and we call this the incompletely frozen (IF) spin phase. We then show 
that a careful RG analysis yields a second (at one-loop order) FP in the limit g + 0, yt + m, 
at y* = E + O ( E ~ ) .  This FP shows dynamical scaling. It is immune to the logarithmic 
problems which suppress the weak-scaling FP [4], while the results of [3], which relied 
only on the limit g+ 0, y = constant, still apply. We analyse the critical behaviour at 
the new ‘dynamical scaling FP’, and conclude that it can be identified with the phase 
transition we find in the integral equations. We thus have a complete and consistent 
description of a spin instability which leads, with increasing disorder, from spin diffusion 
to the IF spin phase, while the charge transport remains uncritical. In the following we 
present our main results and sketch their derivation. A complete account of this work 
will be published elsewhere [ 5 ] .  

In the limit g+ 0, y = constant one can show [5]  that perturbation theory [4] sim- 
plifies so much that one can obtain an expression for the frequency- and wavenumber- 
dependent spin diffusivity to all orders in the loop expansion: 

Here 

and G is the (bare) resistivity, which plays the role of a disorder parameter. D! is the 
bare (i.e. Boltzmann) spin diffusion constant. ~ ( p ,  U) is a retarded susceptibility 

X(P, U) = P 2 / (  -iO/D(O) + P’). (Ib) 

D ( o )  is the diffusion coefficient associated with the basic diffusion pole in the field 
theory [6,4], and it is related to a frequency or temperature renormalisation factor [l]. 
Its physical meaning is that D(w = 0) determines the specific heat coefficient C/T  [7]. 
Finally,X,isthechargedensitysusceptibility. It isgivenby (lb)withD(o) replacedbythe 
charge diffusion constant D,. We note that D, is uncritical [3], and therefore frequency 
independent and given by its Boltzmann value. Returning to perturbation theory for 
D ( w )  [4], we can write it to all orders as 

The bare diffusion constant Do, as well as D,, are related to D: by means of the Fermi 
liquid parameters Fg, Fa, and Ff .  We add a few remarks: (i) the equations can be 
obtainedfrom perturbation theory [4] as aparticular way of dressing the one-loop result; 
(ii) it can be shown [5]  that (1) is exact in the limit considered [8]; (iii) equation (2) 
correctly reproduces perturbation theory [4] up to and including at least two-loop 
order-we will further comment on the validity of (2) after our RG analysis below; (iv) 
the equations are causal in the sense that any causal choice for D ( w )  and D,(p ,  U )  as 
input will yield a causal Ds(k,  5 2 )  and D(52), respectively [9]. 
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To solve (l), (2), we first observe that (la) implies for the spin diffusion constant 
D, = D,(k = 0, R = 0) a structure 

D,/@ = 1 - F(G) ( 3 )  
where Fis  a complicated function of G, which in turn depends on D, itself. Fis  positive 
definite, and is expected to be monotonically increasing with G. If 1 - F(C) has a zero 
at G = G,, D, will vanish at this point. We have performed numerical calculations [ 5 ] ,  
which show that this is indeed the case with a finite G,. Let us denote the dimensionless 
distance from G, by t = (G, - G)/G,. Then D, will vanish like D, - t'with an exponent 

y =  1. (4) 
Since (1) is exact for small D, , this value for y should be exact [lo]. For t > 0, D,  at small 
k and R reads 

D,(k, S2) = D, + u , R ( ~ - ~ ) / *  + b,kd-* (t  ' 0) ( 5 )  
where a, and b,are slowly varying functions of G. Spin transport is diffusive with a long- 
time tail. The critical point, t = 0, is characterised by 

( t  = 0). (6) 

Expanding ( la)  and (2) in k and R ,  we find 
D,(k, R )  = a , Q - ~ ~ '  + b ,kO ( t  = 0) 

with q and z the usual static and dynamic exponents. Their values are 

q = 2 - d  (7b) 
z = 2. (7c) 

Again we expect these exponents to be exact. This can be corroborated as follows. The 
divergence of the spin susceptibility X, - l /Ds ,  equation (4), is not sufficiently strong to 
lead to a spontaneous magnetisation. The exponent of the magnetisation, /j', must 
therefore be zero. Hyperscaling then yields (7b). Equation (7b) also implies acorrelation 
length exponent 

v = l /(d - 2). ( 7 4  
Fort  < 0, i.e. G > G,, D,  will be zero and (6) must still hold [ll]. We are thus led to the 
conclusion that (7) hold for t  < 0 as well. This is the IF  spin phase. For D(R) ,  we find in 
the spin diffusive phase 

where a - DLd/*, and the range of validity of (sa) shrinks to zero as t+ 0. In this limit, 
D vanishes as 

D(R) - D + u R ( ~ - * ) / ~  ( t  > 0 )  ( s a )  

D - (ln(l/r))-.' ( t+ 0). (86) 

If we assign D an exponent K as in [4], we have D - t K  with 
K = 0. 

At the critical point and in the IF spin phase we find 
D ( Q )  - ( ln( l /R))- '  ( t  6 0 )  (9) 

for small Q, The specific heat coefficient C/T thus diverges at the critical point and in 
the IF spin phase, but only logarithmically. 
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These results provide us with a puzzle, namely how to reconcile them with our 
previous RG analysis [4]. Equations (4)-(8) suggest the existence of a dynamical scaling 
FP. However, in [4] we found only the weak-scaling FP with y = 4, K = 3, which fur- 
thermore turned out to be logarithmically suppressed at two-loop order. To clarify this 
point, let us reconsider the RG. We define coupling constants X and X, such that the 
Gaussian vertices rh2) and rf2) read [4], 

rh') = (1/G) (k2 + X) 
r{*) = (I/G) (P + x + x,). 

(loa) 

(lob) 

Here X = GHQM, X, = GKtS2M, where Q M  is the external Matsubara frequency, and 
H and K, are the frequency renormalisation factor and triplet interaction amplitude, 
respectively, defined in [4]. In terms of H and K , ,  we have Do = 1/GH. and D: = 
1/G(H + Kt) .  Notice that X plays the role of the symmetry-breaking external field, and 
that both X and X, are proportional to S2 We define dimensionless renormalised fields 
R = b2XR, k t  = b2XF, where b is the RG length scale parameter, and derive flow 
equations for R and k ,. For our present purpose it is sufficient to go to one-loop order, 
and the salient point can be seen most clearly if we use a momentum-shell RG. From 
perturbation theory [6,4] we obtain 

dR/dlogb = R(2  + iyfl( R , ) )  

d kt/d logb = At(2 + Yfo(4) 

dy/d logb = --EY + iy2(4fo(R) - 3 f , (  Lt ) )  

U l a )  

(1lb) 

(1lc) 

with y = g L,/R = gy , .  g scales like b-O, with 8 = e exactly [4]. The functionsf,, andf ,  
are given by 

f o ( x )  = ( U 4  141 + x) 
fl(x) = (2/x)[(1 + l /x) In(1 + x) - 11. 

( W  

(11e) 

We expect a phase transition only at zero external field, so we look for a FP where R" = 
0, andfo(R*) = 1. For L , ,  we have two possibilities. Since QM(b  = 1) = 0 at the phase 
transition, the most obvious choice is R ;  = 0. This leads toy* = 4e, y = 4 + O(e) ,  and 
K = 3 + O(e) .  This is the weak-scaling FP discussed extensively before [4]. However, 
equat ion(1lb)alsoal lowsforaFPat  L ;  = ~ . T h e n f , ( R ; " ) = O , s o y "  = e , y =  1 ,and  
K = 0. This new FP is consistent with the phase transition we found in (l), (2). It can also 
be analysed by means of the field theoretic RG employed in [4]. One has to keep in mind, 
however, that conventional minimal subtraction breaks down in the limit R ,  + =, The 
limit can be handled by using generalised minimal subtraction or a related scheme [ 121. 
One then obtains results equivalent to (11). By considering two-loop order, it becomes 
clear that the logarithmic problems that suppressed the weak-scaling FP are absent in 
the limit R + x, and that dynamic scaling holds. We conclude that the dynamical scaling 
FP (4,  R t ,  y)* = ( O , x ,  E) exists to all orders, and can be identified with the phase 
transition described by ( l ) ,  (2). In particular, the RG approach is consistent with ascaling 
equation for D,, 

D,(t, k, 52) = b-EDs(tb', kb, Qb') 

which in turn is consistent with (4) and ( 7 ) .  Note that the dimension of 52 is two. This is 
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due to the fact that S2 always appear in the combination gS2 with g - b-', which reduces 
the dimension of S2 from d to 2. 

We add some remarks concerning the nature of the dynamical scaling FP. 

(i) Although a phase transition exists only in the limit Q M ( b  = 1) + 0, this limit can 
be approached in different ways. The existence of two FPS (at one-loop order) is a 
reflection of this ambiguity. If we assume that the RG scale factor b is of the order of the 
correlation length 5, we can characterise the two FPS as follows. If the initial or physical 
frequency Q M ( b  = 1) goes to zero as E-" with 2 < x <  d ,  then fo (R*)  = 1, and 
f l (  R : )  = 0, and the dynamical scaling FP is obtained. If, on the other hand, x > d + 3~ 
the weak-scaling FP is found. 

(ii) We expect the exponent K = 0 to be exact. In [4] we derived an effective theory 
of the vertex rf,*), which was Gaussian plus correction terms which formally vanish near 
the FP. The only reasons for non-trivial renormalisations of R were diagrammatic 'acci- 
dents' which had to do with lack of interchangeability of limits, and which rendered the 
formal arguments invalid. Inspection shows [5] that none of these accidents arises in the 
limit k t +  =, Near the dynamical scaling FP, the effective theory for l?b2) is therefore 
Gaussian, and R has its bare dimension. This can also be concluded from the scaling law 
K = y - U E  which follows from y = constant. 

(iii) In (8), (9) we found logarithmically critical behaviour of R or D. While this is 
consistent with K = 0, we have to wonder why the logarithm does not appear in the RG. 
Perturbation theory [5] shows that the logarithmic term is indeed absent order by order 
in the double expansion in y and l / ( d  - 2), and therefore cannot be found by RG 
techniques. This is also consistent with the logarithm being independent of dimen- 
sionality. It is only the infinite resummation, equation (2), that produces this behaviour. 
We also note that the existence of the logarithm is tied to the fact that the exponent q = 
2 - d is exact. It follows that the critical behaviour of D is outside our well controlled 
perturbative scheme, and we do not know if it is exact. This also holds for our result that 
the behaviour at small k and C2 in the entire IF  spin phase is identical to that at the 
phase transition. In addition, our 'exact' exponents may be subject to non-perturbative 
corrections such as the logarithmic correction to K discussed above. 

Let us finally briefly discuss the implications of our results for experiments at finite 
temperatures. Essentially the discussion given in [4] still applies with two modifications. 
First, we now have a bonafide FP, and no breakdown of scaling is predicted. Second, the 
exponents K = 0 and U = l / ( d  - 2 )  are now known exactly. At the critical point and in 
the IF spin phase, we find the specific heat to behave as C - Tln T. This provides a very 
good fit [4] for the deviations from linear behaviour seen in the cleanest sample (n/n,  = 
1.25) of [13]. The spin susceptibility xs diverges like xs - T-P with 

p = ( d  - 2)/2. (12) 

Equation (12) is in good agreement with the low-temperature behaviour of the cleanest 
sample in [14]. With further increasing disorder we expect mode-mode coupling effects 
to restore the coupling of the charge to the spin degrees of freedom. This will modify 
the IF  spin phase away from the critical point, and eventually lead to a MIT. Close to the 
MIT and in the insulator our results do not agree with the experiments. This is presumably 
due to the restored coupling between spin and charge. In [15] a T-dependence of x s  was 
found at n/n, = 1.4 that appears to be much stronger that V T ,  and that becomes weaker 
as the MIT is approached. This is in disagreement with the data of [14]. We do not know 
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the reason for this discrepancy. Further experiments in the metallic phase to look for 
the dynamical scaling critical point would be very helpful. 

In conclusion, we have found a new phase transition in disordered electron systems. 
The critical exponents have been obtained exactly. The large-disorder phase is described 
as an incompletely frozen spin phase which is not localised, but displays subdiffusive 
spin transport. Comparison with experimental data gives good agreement. 

This work was supported in part by the NSF under Grant No DMR-89-13095 and DMR- 
88-19302. Acknowledgment is made to the donors of The Petroleum Research Fund 
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